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Analyses of Case–Control Data for Additional Outcomes
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Abstract: Consider a case–control study in which prevalent cases of
a given disease define the index series and members of the base
population without the disease are sampled to provide the referent
series. Information on a set of explanatory variables (eg, genotypes)
is collected at great cost for cases and controls. The objective of the
study is to evaluate the relationship between case status and the ex-
planatory variables. Subsequently, an investigator notes that the
prevalence of a second disease was measured for the members of the
index and referent series. The investigator wishes to make efficient
use of the available data by assessing the relationship between this
second disease and the set of explanatory variables. In this paper, we
discuss 2 analytic approaches that might be used to assess associa-
tions between the explanatory variables and an outcome other than
the original disease. One is through the inclusion of a design variable
for original disease status as a covariate; and, the second is through
weighted logistic regression using the inverse of the sampling
fractions as the weights. The latter approach allows the investigator
to derive an estimate of association between the explanatory vari-
ables and the second disease without adjustment for the first disease.
Weighted logistic regression methods are readily implemented using
available statistical packages.

(Epidemiology 2007;18: 441–445)

The conduct of epidemiologic research can be expensive.
When possible, it is advantageous to develop analytic

methods that maximize the efficiency of such studies, and
permit investigation of additional study questions using ex-
isting data. The context for the analytical method discussed in
this paper is as follows. A large multicenter cross-sectional
study of the prevalence of childhood asthma was conducted
with a focus on environmental and genetic risk factors.1

Subsequently, a nested case–control study was conducted in
which cases were sampled from children in the study base
who reported wheezing during the last 12 months. Controls
were sampled from children in the study base who had not
reported wheezing during the last 12 months. Biologic mea-
surements, such as bronchial responsiveness and serum im-
munoglobulin E levels (IgE), were made on the members of
this case–control study. These data were used to assess the
relationship between predictors, such as IgE, and the preva-
lence odds of self-reported wheezing.

A variety of allergy-related health endpoints other than
self-reported wheezing were also assessed in the study de-
scribed above. The question arose of how data from the
nested case–control study could be used to analyze associa-
tions between the explanatory variables and other health
endpoints. This is a generic question in case–control analy-
ses. The problem can be viewed as analysis of data derived
from a case–control study using disproportionate stratified
subsamples of the study base (ie, samples of those with and
without some characteristic assessed in the full study base).2,3

Ignoring the sampling structure can lead to severely biased
results. A solution to this problem is simply to derive esti-
mates of prevalence odds ratios that are adjusted for the
matching factor (case status) that defined the original index
case series for the nested case–control study. Prentice and
Pyke4 have shown that when an unconditional logistic regres-
sion model is fit to data derived from a cumulative case–
control study design (in which an investigator selects controls
from among those who remain disease-free at the end of the
study), only the model intercept is biased. However, the effect
measure that is obtained is the estimate of the change in log
prevalence odds of disease per unit change in exposure
adjusted for the case status that defined the original case
series. This result is not necessarily an estimate of the effect
measure of interest and, in some instances, it may not be a
valid effect estimate at all. For example, if the disease that
defined the original case series (wheezing) is an intermediate
in the causal relationship between exposure and another
outcome of interest (eg, clinically diagnosed asthma) then
adjustment for wheezing in analyses of associations between
IgE and clinically-diagnosed asthma will result in a biased
effect estimate. An alternative, simply to restrict the anal-
ysis to the noncases in the original study (ie, the controls),
has similar implications. The effect measure that is ob-
tained is conditioned on the case status that defined the
case series for the original study; furthermore, discarding
information on the original case series seems inefficient.
Therefore, we were interested in exploring other analytic
approaches to this problem.
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METHODS
Consider a case–control study in which prevalent cases of

disease D1 define a case series. Subjects who were free of disease
D1 at the time of the prevalence survey were randomly sampled to
provide a referent series. Information on a vector of explanatory
variables, X, was collected for members of the index and referent
series. These data were subsequently used to investigate associa-
tions between X and an outcome other than D1, denoted D2.

An analysis of the association between X and D2 can be
viewed as an analysis of case–control data with biased sam-
pling. While the literature on this topic is substantial, biased
sampling is usually a term used to discuss matching, or sam-
pling, with respect to a covariate of interest. In such instances,
the data analyst intends to control for the factor that defines
sampling strata in the data; therefore, a commonly-advocated
approach is to stratify on the covariate. If the sampling fractions
are known, the data analyst can use the results of a logistic
regression model fitting not only to estimate odds ratios but, by
adjusting the model intercept for the stratum-specific sampling
fractions of cases and controls, to estimate odds or predicted
risks for specific covariate patterns. The literature on biased
sampling also includes discussions in which biased sampling
strategies are employed to ensure that sampling probabilities are
known, so that a data analyst can assess effect modification
between an exposure of interest and factors that define sampling
strata on scales other than the multiplicative.3,5 Langholz et al6

have proposed over sampling with respect to the primary
exposure of interest (termed counter-matching). The counter-
matching approach may increase the statistical precision of
effect measures if the exposure distribution is skewed.

In contrast, we are considering study data that have been
sampled with respect to a factor D1 that is not of interest as an
exposure, nor necessarily as a covariate. If we do not know the
sampling fraction of cases of disease D2, then we have a
”convenience sample” of cases of D2 observed within an index
series and referent series defined by disease D1. In the sections
below we discuss 2 approaches to deriving estimates of the
prevalence odds ratio for disease D2, contrasting subjects with
covariate patterns defined by explanatory variables X.

Adjustment for D1
One approach to analysis of the relationship between

disease D2 and an explanatory variable X (in a case–control
study where the index series was defined by disease D1) is via
a logistic regression model where a design variable is in-
cluded to adjust for disease status D1.4,7 This is a standard
unconditional logistic regression model in which one of the
covariates in the model is a binary indicator variable, stratum,
for the disease D1 that defines the index case series,

ln� �i

1 � �i
� � �0 � �1xi � �2stratumi

where � is the probability of D2 � 1, given the model
covariates, and

LnL̂��;X) � �
i � 1

n

(yiln�i � �1 � yi�ln�1 � �i�)

is the log-likelihood-function from which the estimates of the
logistic regression coefficients � are derived, given that y
denotes the value of the outcome variable.7 The logistic
model fitting will provide an estimate of the association
between X and D2 in a model that conditions on a design
variable for D1, which determined the study’s sampling
scheme.

Stratum-Weighted Logistic Regression
An alternative analytical approach is to replace the log

likelihood above by a weighted sum using weights wh given
by the reciprocal of the selection probability for the respec-
tive stratum,

LnL̂��;X) � �
h�1

H

wh�
i�1

nh

(yhiln�hi � �1 � yhi�ln�1 � �hi�)

where h indexes case–control (D1) status.2,8,9 For example,
for a pair-matched case–control study in which all cases in
the study base are ascertained, the weight (inverse selection
probability) for cases is 1 and the weight for controls is the
number of noncases in the study base divided by the number
of controls selected.

Rather than adjusting for the design variable for the
stratum, an estimator accounting for the stratified sampling is
obtained with stratum-specific sampling weights that are part
of the log-likelihood-function. An advantage of this latter
approach is that the data analyst can derive an estimate of
association between X and D2 that is not adjusted for D1. As
would be observed in logistic model fittings to data for the
entire study base, the results obtained via these 2 approaches
will diverge if D1 behaves like a confounder or an interme-
diate variable in the association between X and D2.

Empirical Example
An empirical example is used to illustrate 2 points.

First, stratum-weighted logistic regression allows a data an-
alyst to derive an unbiased estimate of association between X
and D2 that is not adjusted for D1. Second, the estimate of
association derived from stratum-weighted logistic regression
may differ from that obtained via a standard unconditional
logistic regression analysis in a model that adjusts for D1, via
analyses that ignore the original sampling structure, and via
analyses that use data for the referent series only.

Study data on symptoms of respiratory and atopic
diseases as well as on various risk factors in children (ages
9–11 years) were collected by parental questionnaires con-
ducted in 1994–1995 in Munich, Germany. Details and
results of this study are published elsewhere.1,10 In Munich,
measurements of blood samples (eg, specific serum IgE) and
physical examinations (skin prick testing or bronchial chal-
lenges) were collected in an unstratified random sample of the
population. We analyzed the data from Munich for all chil-
dren with valid information on specific IgE-levels, self-
reported hay fever, and self-reported wheezing (n � 1630).
The study was part of a worldwide collaboration.1 The
protocol allowed a study center to perform IgE analyses only
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in a nested case–control study that included disproportionate
stratified subsamples of children based upon disease status;
most study centers have chosen the latter approach. As study
instruments and methods were the same for all centers world-
wide, we used the data from Munich to illustrate the effect of
different approaches to analyze disproportionate stratified
subsamples.

For illustrative purposes we present a study in which
self-reported hay fever is the disease that defined the index
case series. We use these case–control data to assess the
association between allergen-specific IgE levels (categorized
as �0.7 vs. �0.7 kU/L) and another outcome of interest
(self-reported wheezing). A standard unconditional logistic
regression model was used to derive a parameter estimate for
the IgE-wheezing association (�̂ul) using data for the full
study sample. This unconditional logistic regression model
included a single parameter for IgE, defined as a dichotomous
variable. Next, we drew a random sample of 100 children
who reported hay fever (cases) and 200 children without hay
fever (controls) from these data. Figure 1 illustrates the
structure of the nested case–control study. The SAS v. 9.1
statistical package (PROC SURVEYLOGISTIC; SAS Insti-
tute, Cary, NC) was used to derive a parameter estimate for
the IgE-wheezing association �̂swl via a stratum-weighted
logistic regression model applied to the nested case–control
data. The regression model included a single parameter for
IgE, defined as a dichotomous variable, and the outcome
variable was a binary indicator of wheezing. The process of
selecting cases and controls defined by hay fever status, and
deriving an estimate of the IgE-wheezing association, was
repeated over 1000 iterations, after which the average param-
eter estimate, E(�̂swl), was calculated. Standard logistic re-
gression models were also fitted to the data for the nested
case–control samples to obtain parameter estimates that were
adjusted for hay fever status. Lastly, to illustrate the effect of
ignoring the sampling scheme, standard logistic regression
models that included a single parameter for IgE, defined as a
dichotomous variable, were fitted to the data for the nested
case–control samples; and, to illustrate the effect of analyz-
ing the control series only, standard logistic regression mod-
els that included a single parameter for IgE, defined as a

dichotomous variable, were fitted to the data for the control
series of the nested case–control samples.

RESULTS
The estimate of the prevalence odds ratio of wheezing

(when comparing high IgE to low IgE study members) was
derived via stratum-weighted logistic regression analyses of
nested case–control data originally collected to study hay
fever. Figure 2 provides a histogram of the parameter esti-
mates for the IgE-wheezing association �̂swl obtained via
1000 iterations of this procedure. As illustrated, the parameter
estimates from weighted logistic regression were symmetri-
cally distributed around a median value of 1.35. There was no
evidence of skewness in this distribution and the average
parameter estimate (E(�̂swl) � 1.38) closely approximated the
result obtained via standard unconditional logistic regression
using the full study sample (�̂ul � 1.34, se��̂ul� � 0.18). The
averaged standard error of the parameter estimates obtained
via stratum-weighted logistic regression for the IgE-wheezing
association was 0.47.

Fitting of a standard unconditional logistic regression
model with a design variable for hay fever produces a
parameter estimate for the association between IgE and self-
reported wheezing that is adjusted for hay fever status. The
average parameter estimate obtained via a standard logistic
regression model that adjusts for hay fever status (1.13)
differs from the result obtained via stratum-weighted logistic
regression analyses. The average standard error of the param-

FIGURE 1. Nested case–control study of childhood hay fever
where cases and controls were sampled from a study of 1630
German children.

FIGURE 2. Histogram of the distribution of weighted logistic
regression parameter estimates for the association between IgE
level (�0.7 versus �0.7) and self-reported wheezing (yes vs.
no). Values obtained after 1000 replications of nested case–
control analyses conducted by sampling 100 cases of children
who reported hay fever and 200 children who did not report
hay fever. Dashed line indicates the estimate of association
between IgE level and self-reported wheezing obtained via
standard unconditional logistic regression using data for the
full study sample of 1630 German children.
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eter estimates for the IgE-wheezing association obtained via
fitting of a standard unconditional logistic regression model
with a design variable for hay fever was 0.46. However, as
discussed above, the scientific interpretation of an association
between IgE and self-reported wheezing conditioning on hay
fever status may be of little or no interest to an investigator.

In order to illustrate the effect of simply ignoring the
disproportionate stratified sampling scheme, we examined the
results obtained by fitting a standard logistic regression model
without a design variable for hay fever status. The average
parameter estimate for the association between IgE and self-
reported wheezing was 1.51, with an average standard error of
0.42. Lastly, to illustrate the effect of analyzing the control series
only, we fitted standard logistic regression models to the control
series. The average parameter estimate for the association be-
tween IgE and self-reported wheezing was 1.13, and the average
standard error of the parameter estimates was 0.95.

DISCUSSION
There are at least 2 options when analyzing case–

control data for an outcome other than the one that defined the
index series. One is to adjust for the disease that defined the
original case series. This approach produces estimates of
association that are adjusted for a factor (the status of study
members with respect to the disease that defined the index
series) that is not necessarily of interest as a covariate in the
association under study.

Another option is to use stratum-weighted logistic re-
gression. This type of regression is readily-implemented via
the SAS statistical package. This approach is generally ap-
plicable in analyses of 2-stage data when it is not desirable to
adjust for the variable that defined the strata for the second-
stage sampling. In the case–control context, stratum-
weighted logistic regression may be particularly useful in
situations where the disease that defined the original case
series is a potential intermediate in the association between an
exposure of interest and the disease under study (or situations
in which the effects of predictor variables are confounded
with the strata variables defining the index case series).

Stated differently, if nested case–control data are ana-
lyzed for an outcome other than the disease that defined the
index case series, the data analyst will typically need to
account for sample selection probabilities in a setting in
which the selection probabilities may relate to values of the
response variable. Conditioning on the values of the design
variable (index case status) is often recommended as a plau-
sible approach for dealing with the problem of unequal
selection probabilities. However, inclusion of the design
variables as covariates may undermine the scientific rationale
for the regression analysis.9 In such scenarios, this informa-
tion about selection probabilities may be represented by
sampling weights.

There are some issues to keep in mind when consider-
ing this approach. First, it is necessary to specify the sampling
fractions employed in the original study. If the original
case–control study was nested within an enumerated cohort,
then sampling fractions can be calculated directly. In a
population-based case–control study, these values may be

estimable by reference to external information; the ratio of
the sampling fraction of cases to the sampling fraction of
controls may be easier to estimate in a population-based study
than absolute sampling fractions.11 This ratio can be used to
derive weights for stratum-weighted logistic regression by
assigning a weight of 1.0 to cases and a weight equal to the
ratio of sampling fractions to the controls. In a matched
case–control study, the stratum-specific sampling fractions
would be employed in a similar manner. Second, this ap-
proach is best applied to large case–control series, using
outcomes that are not extremely rare. If a disease is rare or the
number of observations is small, then there may be insuffi-
cient data with which to investigate associations between
explanatory variables and an outcome that differs from the
disease that defined the original case series.

Simply ignoring the sampling scheme can lead to bi-
ased results, as illustrated via our empirical example. In
contrast, adjustment for the disease that defined the original
case series may be appropriate if the disease that defined the
index series (D1) is not associated with the outcome of
interest (D2), or if the disease that defined the index series is
a true confounder of the association between the predictor
variables and the disease of interest. For example, if D1 is
neither a confounder of, nor intermediate variable in, the
association between exposure and D2, then the estimate of
association with D2 obtained via stratum-weighted logistic
regression will be identical to the estimate obtained condi-
tioning on D1. In such scenarios adjusting for D1 in a standard
logistic regression analysis will provide a valid (and possibly
more precise) estimate of association. However, often the
disease that defined the original case series is a factor that
may not be desirable as a model covariate. In our example,
the outcomes of interest (D1 and D2) are associated, and each
is associated with the explanatory variable. Stratum-weighted
regression offers an easily-implemented approach to estimate
the association between predictor variables and D2 without
conditioning on D1, and provides parameter estimates whose
interpretation relates to the independent association between
the exposure and outcome D2.

Rather than use weighted logistic regression, a data
analyst might consider restricting the analysis to some subset
of the data (eg, controls only). If the controls had been
selected using density sampling (such that the controls are a
sample of the study base) then the association between the
exposure and outcome D2 restricted to the controls will
provide a valid odds ratio estimate; however, restricting the
analysis to the control series will result in a loss of informa-
tion (most notably in a pair-matched case–control study). For
a study of disease prevalence or cumulative incidence, re-
stricting the analysis to the control series may undermine the
scientific rationale for the regression analysis, similar to an
analysis that adjusts for index case status.

A data analyst is not obliged to choose one of these
analytical approaches. If an investigator suspects that D1 is
neither a confounder nor intermediate in the association
between exposure and D2, then this may be explored by
comparing the magnitude and precision of results from stra-
tum-weighted logistic regression and standard logistic regres-
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sion with adjustment for D1. The advantage of stratum-
weighted logistic regression is that it offers a way to analyze
case–control data for associations between predictor vari-
ables and health outcomes other than the one that defined the
original index series, obtaining effect measures that are not
adjusted for the disease that defined the index series. Al-
though not a novel approach, stratum-weighted logistic re-
gression is rarely applied by epidemiologists in this context.
This approach allows a data analyst to make greater use of
case–control data for investigations of etiologic associations
and may be of particular value for analyses of data derived
from large case–control studies.
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